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Abstract 
 
Injection of fracturing fluids into shales during hydraulic stimulation can result in various chemical reactions 
involving the injected fluid and host shale rock. Differences in chemical composition between the injected fluids and 
fractured rock can result in mineral precipitation along shale fractures and within the shale matrix, potentially 
affecting long-term gas recovery from the shale. Our prior research showed that mineral precipitation and 
dissolution occur along freshly-generated fractures, and within the shale matrix, during core flood experiments in 
which laboratory-fractured Marcellus Shale was exposed to simulated hydraulic fracturing fluids. Many of the 
mineral precipitation reactions were hypothesized to occur due to the inability for antiscaling compounds in the 
fracturing fluids to control mineral precipitation at elevated temperature and pressure. In some locations along the 
fracture, proppant was cemented to shale surfaces through secondary mineral precipitates. The present study focuses 
on core flood experiments using fresh core and site hydraulic fracturing fluid from the Marcellus Shale Energy and 
Environmental Laboratory site (MSEEL; Morgantown, WV) at reservoir pressure and temperature conditions. The 
objectives of this study are to evaluate the reproducibility of the earlier experiments using fresh core, and to identify 
causes for any observed differences with the prior outcrop-based experiments.  
 
Introduction  
 
Introduction of fracturing chemicals into shale formations can initiate chemical reactions that result in shale mineral 
dissolution and precipitation of secondary minerals within the shale matrix and along newly-generated fractures. 
These reactions can affect matrix and fracture permeability by generating new flow pathways in the case of mineral 
dissolution. Secondary mineral precipitation could be both beneficial and detrimental to gas flow within the 
reservoir, as depending on the mineral morphology and location, precipitation could result in additional propping of 
fractures, or could reduce matrix and fracture permeabilities. Recent attention to fracturing chemical-mineral 
reactions that could affect gas production have shown that both the formation mineralogy and injected fluid 
chemistry have a significant influence on the overall chemical changes during hydraulic fracturing. Barite has been 
of interest in the Marcellus Shale due to elevated concentrations of barium measured in produced waters and the 
shale. Barite scale in the wrong locations within the system can present a significant challenge for sustained long-
term production as barite dissolution and removal are difficult and potentially costly.  
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Prior batch experimental studies focused on reactions between Marcellus Shale and fracturing fluids showed that, in 
the presence of elevated barium and fracturing chemicals, barite precipitation was either directly observed or 
predicted based on saturation indices calculations from experimental fluid chemistries (Dieterich et al., 2015; 
Marcon et al., 2017). In core flood experiments performed with laboratory-generated fracturing chemicals and core 
plugs derived from Marcellus Shale outcrop, barite precipitation was observed by computed tomography (CT) and 
scanning electron microscopy (SEM). Barite is also predicted based on saturation indices calculations with fluid 
chemistry, for fracturing fluids generated with both freshwater and recycled produced water compositions as the 
carrier fluid (Vankeuren et al., under review). In these experiments, barium was either leached from the shale (in the 
case of freshwater-based fracturing fluid) or present in the initial fracturing fluid (in the case of produced water-
based fracturing fluids). Sulfate was generated through reaction of the ammonium persulfate breaker, and to a lesser 
extent, oxidation of pyrite in the shale. Replicate experiments designed to verify the Vankeuren (under review) 
study, and the integrity of the experimental system used for the present study, showed similar results (Moore et al., 
2017) 
 
The Marcellus Shale Energy and Environmental Laboratory (MSEEL) is a gas-producing research well located in 
Morgantown, West Virginia operated by North Northeast Energy (NNE) and managed by West Virginia University 
(WVU) as one of the National Energy Technology Laboratory/U.S. Department of Energy (NETL/DOE) 
hydraulically-fractured shale field sites. The site includes a production well that was vertically cored (MIP 3H) and 
hydraulically stimulated during November 2015. Samples from MSEEL include fresh core and fracturing chemical 
mixtures actually used on site, which can provide a new perspective on potential mineral reactions during hydraulic 
fracturing, as our prior studies were performed with a lab-generated fracturing fluid and Marcellus Shale core plugs 
extracted from outcrop samples. The focus for this study was to evaluate mineral dissolution and precipitation in 
MSEEL 3H core samples reacted with a sample of the hydraulic fracturing fluid developed for fracturing of the MIP 
3H well (November 2015).  
 
Methods 
 
Experimental Design and Apparatus 
Experiments were designed to represent diffusive flow and reaction of hydraulic fracturing fluids with the shale 
reservoir rock over a simulated four-day shut in period. The apparatus consisted of a dual core holder system, with 
an inlet reservoir leading to an injection pump (Figure 1). Fluids were introduced into a Hassler type core holder, 
which contained shale cored from MSEEL 3H samples for evaluating fluid-rock interactions, or remained empty for 
procedural blank tests. Injection was performed with a solvent pump at a constant rate, overburden pressure was 
maintained with a confining pump, and a back-pressure pump controlled system pressure and acted as the effluent 
reservoir. Fluids were sampled from the influent and effluent reservoirs for evaluating changes to fluid chemistry 
from the experimental apparatus (in the case of the system blank test) and fluid-rock interactions (in experiments 
containing MSEEL core). The confining reservoir chemistry was sampled and monitored to ensure a no flow 
boundary was maintained between the core sleeve and end plugs. Experiments and blank tests were performed at 
150°F, 3000 psi confining pressure, 2800 psi pore pressure, and a fluid flow rate of 0.03 ml/min. Injected fluid was 
chilled to 5°C for the duration of the test to avoid microbial growth. Two core flood experiments were performed 
with MSEEL core, and one experiment was performed where 3H injection fluid was circulated through the 
experimental apparatus in the absence of core (referred to as the “blank experiment” in the results and discussion).  
 
Core Selection, Preparation, and Hydraulic Fracturing Fluid  
Two depths of the MSEEL 3H core were selected based on location associated with hydraulic fracturing of the 3H 
well, and based on the ability to sub-core from the existing slabs: 7498.4 ft, and 7504.6 ft. These samples were 
chosen because they were the most competent sections of core near the lateral kick off point, which was slightly 
lower at approximately 7500 ft. Samples were cut from 2/3 slab and core was drilled bedding concordant. Drilling 
performed perpendicularly to the bedding plane resulted in core disking. The 1.5 inch diameter samples were cored 
with at least 4 inches total length and fractured by a modified Brazilian method (Atkinson et al., 1982); the cores 
were in two 2” long sections each as even the concordant cores tended to break. Fractures were filled with less than 
a single monolayer of 40/70 mesh >99% quartz Innoprop proppant, and loaded into core sleeves. Hydraulic 
fracturing fluid used for the experiments was sampled from the batch of fracturing fluid injected into the MIP 3H 
well during fracturing (date range 11/6/2015 through 11/15/2015). The composition of the fracturing fluid is 
presented in Table 1. A pump malfunction occurred at 24 h for the 7498.4 ft experiment resulting in a higher flow 
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rate through the experimental apparatus, which resulted in a higher volume accumulation in the effluent reservoir 
and may result in some differences of fluid chemistry measured at 24 and 48 h for this experiment.  
 

 

 
Figure 1:  Schematic of experimental apparatus 

 
Fluid Chemistry Analysis 
Fluid sample analysis was performed by ion chromatography (IC), inductively coupled plasma mass spectrometry 
(ICP-MS), and inductively coupled plasma optical emission spectroscopy (ICP-OES). Influent and effluent reservoir 
fluids were sampled according to the following schedule after introduction of fluids into the experimental apparatus: 
2, 24, 48, 72, and 96 h. Samples for IC analysis were filtered through 0.2 µm membrane and not-acidified, and 
samples for ICP-MS and ICP-OES samples were unfiltered and acidified with ultrapure nitric acid (Thermo Fisher, 
Optima grade) prior to analysis. The pH of the influent and effluent reservoir fluids were monitored during 
sampling. The temperature of fluids when sampled from the collection reservoir ranged from 21.25 ± 2.42 °C for the 
blank and both core-containing experimental runs. 
 
Computed Tomography Scanning and Image Processing 
The 3H cores were scanned before and after exposure with a North-Star Imaging M-5000 Industrial Computed 
Tomography (CT) scanner. Voxel resolution was 25.4 µm. Image processing was performed using ImageJ© and 
ilastik®. No discernable features of interest, which included reacted zones and precipitate, were detected using 
traditional or advanced techniques. Thus, post-processing of the images was not performed in a quantitative fashion.  
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Table 1:  Hydraulic Fracturing Fluid Product Component Disclosure for MIP 3H Well from FracFocus.org 

 

Trade 
name 

Supplier Purpose Ingredients Chemical 
Abstract 
Service 
Number  
(CAS #) 

Maximum 
Ingredient 
Concentration 
in Additive 
(% by mass) 

Maximum 
Ingredient 
Concentration 
in HF Fluid 
(% by mass) 

Proppant 
Transport 

Schlumberger Corrosion 
Inhibitor, 
Scale 
Inhibitor, 
Biocide, 
AntiFoam 
Agent, 
Acid, 
Breaker, 
Gelling 
Agent, 
Friction 
Reducer, 
Iron 
Control 
Agent, 
Fluid Loss 
Additive 

    

   Water (Including Mix 
Water Supplied by 
Client) 

N/A  87.63568 

   Quartz, Crystalline 
silica 

14808-60-
7 

99.06784 12.21724 

   Hydrochloric acid 7647-01-0 0.66726 0.08228 
   Ammonium sulfate 7783-20-2 0.06845 0.00844 
   Guar gum  9000-30-0 0.05865 0.00724 
   Acrylamide, 2-

acrylamido-2-
methylpropanesulfonic 
acid, sodium salt 
polymer 

38193-60-
1 

0.05052 0.00623 

   Glutaraldehyde 111-30-8 0.02831 0.00349 
   Ethanol, 2,2’,2”-

nitrolis-1,1’,1”-
tris(dihydrogen 
phosphate), sodium 
salt 

68171-29-
9 

0.00971 0.00120 

   Diammonium 
peroxidisulphate 

7727-54-0 0.00601 0.00074 

   Polymer of 2-
acryalmido-2-
methylpropanesulfonic 
acid sodium salt and 
methyl acrylate 

136793-
29-8 

0.00541 0.00067 

   Alkyl(c12-16) 
dimethylbenzyl 
ammonium chloride 

68424-85-
1 

0.00506 0.00062 
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Table 1, continued 

 

Trade 
name 

Supplier Purpose Ingredients Chemical 
Abstract 
Service 
Number  
(CAS #) 

Maximum 
Ingredient 
Concentration 
in Additive 
(% by mass) 

Maximum 
Ingredient 
Concentration 
in HF Fluid 
(% by mass) 

   Sodium erythorbate 6381-77-
7 

0.00436 0.00054 

   Trisodium ortho phosphate 7601-54-
9 

0.00427 0.00053 

   Urea  57-13-6 0.00332 0.00041 
   Polypropylene glycol 25322-

69-4 
0.00294 0.00036 

   Methanol 67-56-1 0.00252 0.00031 
       
   Fatty acids, tall-oil 61790-

12-3 
0.00156 0.00019 

   Thiourea, polymer with 
formaldehyde and 1-
phenylethanone 

68527-
49-1 

0.00129 0.00016 

   Ethylene glycol 107-21-1 0.00121 0.00015 
   Non-crystalline silica (impurity) 7631-86-

9 
0.00084 0.00010 

   Vinylidene 
chloride/methylacrylate 
copolymer 

25038-
72-6 

0.00080 0.00010 

   Sodium sulfate 7757-82-
6 

0.00078 0.00010 

   Alcohols, C14-15, ethoxylated 
(7EO) 

68951-
67-7 

0.00061 0.00008 

   Ethanol 64-17-5 0.00061 0.00007 
   Propargyl alcohol 107-19-7 0.00041 0.00005 
   2-Propenamid (impurity) 79-06-1 0.00017 0.00002 
   Hexadec-1-ene 629-73-2 0.00014 0.00002 
   1-Octadecene (C18) 112-88-9 0.00007 0.00001 
   Dimethyl siloxanes and silicones 63148-

62-9 
0.00005 0.00001 

   Tetrasodium 
ethylenediaminetatraacetate 

64-02-8 0.00009 0.00001 

   Dodecamethylcyclohexasiloxane 540-97-6   
   Poly(tetrafluoroethylene) 9002-84-

0 
0.00001  

   Formaldehyde 50-00-0 0.00001  
   Copper(II) sulfate 7758-98-

7 
  

   Decamethyl cyclopentasiloxane 541-02-6   
   Magnesium silicate hydrate 

(talc) 
14807-
96-6 

0.00002  

FR 
Pro 
150 

ECM Friction 
Reduction 

    

   Water 7732-18-
5 

50.00000 0.01575 
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based on results from a review of FracFocus data, and generated with fracturing chemicals supplied by a different 
service company (Vankeuren et al., in review; Moore et al., 2017). The fracturing fluid mixtures between the 
MSEEL and prior experiments therefore contained different fracturing chemicals, and different concentrations of 
fracturing chemicals where similarities existed. For example, ammonium persulfate, considered to significantly 
control sulfate generation and resulting barite precipitation in the prior experiments, is present in different 
concentrations in the lab-generated solution from prior experiments and the MIP 3H fracturing fluid. Ammonium 
persulfate was 0.02% of solution in the experiments performed by Vankeuren et al (under review) and Moore et al. 
(2017). In the experiments reported here, the maximum amount of ammonium persulfate in solution is 0.00074% by 
mass, and likely was lower during our MSEEL core flood experiments (performed during March 2017) due to 
oxidant degradation during storage after the November 2015 preparation of fracturing fluid at the well pad.  
 
Sulfate is present in the influent due to existing concentrations in the make-up water, and due to addition of 
fracturing chemicals (such as ammonium persulfate, and copper sulfate; Table 1). Sulfate increases in both MSEEL 
core flood experiments, and does not change in the blank experiment relative to the influent concentration (Figure 
4A,B), indicating that reaction between the influent and cores resulted in sulfate generation. Sulfate can be generated 
from the fracturing fluid and from reactions with minerals in the shale. Shale mineral reactions likely to generate 
sulfate concentrations observed in the MSEEL experiments include ion exchange, gypsum dissolution and pyrite 
oxidation. Sulfate release via ion exchange was observed in ultrapure water extracts of MIP 3H sidewall cores 
(Hakala et al., 2017). Because of the slight pH decrease observed in the MSEEL core flood effluents, pyrite 
oxidation is also a potential contributor to sulfate in the system as the reaction produces sulfate and lowers the 
solution pH. Pyrite may oxidize due to the presence of oxygen (Eq. 1) or Fe3+ (Eq. 2) in solution (Rimstidt and 
Vaughan, 2003).  
 

FeS2 + 3.5O2 + H2O = Fe2+ + 2H+ + 2SO4
2-    Equation 1 

 
FeS2 + 14Fe3+ + 8H2O = 15Fe2+ + 16H+ + 2SO4

2-  Equation 2 
 
Lowering of the pH concurrent with increases in Ca concentrations in the MSEEL core flood effluents provides 
evidence for calcite dissolution, which has been observed in prior batch and core flood experiments with Marcellus 
Shale (Dieterich et al., 2016; Marcon et al., 2017; Vankeuren et al., under review). Concurrent calcite dissolution 
during pyrite oxidation within shales has been observed in other studies focused on shale-fracturing fluid 
interactions (Wilke et al., 2015).  
 
Conclusions  
 
Composition of the hydraulic fracturing fluid will affect observed secondary mineral precipitates that form in newly-
generated fractures and the shale matrix. The presence of oxidants, especially persulfate-based compounds, can have 
a significant effect on scale mineral precipitation; certain reactions may not be observed if the oxidant isn’t as active, 
or in a low concentration. Concurrent pyrite oxidation and calcite dissolution occur in the MSEEL core flood 
experiments. The MSEEL core flood experiments showed no change between the pre- and post-reaction CT scans, 
indicating a difference in fracturing fluid-shale reactions that result in mineral scale formation, compared to prior 
studies. Further characterization of the shale post-reaction is planned.  Additional studies exploring interactions 
between fracturing fluids and shale involving a range of concentrations of specific fracturing chemicals will provide 
information on how to best control mineral scale formation during hydraulic fracturing of shale gas reservoirs.  
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