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Abstract  
 
This study utilized the recorded data of a distributed temperature sensing (DTS) and distributed acoustic sensing 
(DAS) fiber-optic system from a gas producing horizontal well in the Marcellus Shale, in Northern West Virginia. A 
predictive data-driven model was developed to understand the well’s performance and forecast the gas production 
using DTS data and daily flowing time as dynamic inputs, from May 2016 to May 2018. We used 1320 DTS 
measurements along the lateral of the well MIP-3H for each day and upscaled to a stage scale by an averaging 
method. A multi-layer perceptron neural network (MLPNN) was trained with stage-based daily DTS data, and daily 
flowing time to predict gas production for the next day. We carried out a sensitivity analysis by removing each stage 
DTS attribute from the input dataset to identify the most influential stages in predicting gas production. The 
sensitivity analysis (SA) shows that several stages carry higher weights in predicting gas production, while several 
stages have less impact on prediction accuracy. In contrast to DTS, DAS data was only recorded during hydraulic 
fracturing of the well. DAS energy variance attribute, which could be inversely related to stage stimulation 
efficiency, was computed for each stage and compared with the results of the neural network SA. Stages with higher 
variance in DAS energy (less efficient stimulation) have less effect on neural network accuracy. This relationship is 
more significant for stages that are completed with limited entry approach in zones with similar minimum horizontal 
stress. The results of the sensitivity analysis was also compared with flow scanner production logging data. Results 
suggests that DAS data is more correlated with sensitivity analysis results than production logging data. 
 
Introduction  
 
Well MIP-3H near Morgantown, West Virginia was studied for the prediction of the daily gas production from the 
Marcellus Shale through use of an artificial neural network (Figure 1). The 28-stage horizontal MIP-3H well, drilled 
as a part of the Marcellus Shale Energy & Environment Laboratory (MSEEL) project, has multi-scale and multi-
sensor-based spatio-temporal data, such as DTS, DAS, production log from flow scanner production log, 
geomechanical logs, surface pressure, and surface temperature. DAS and DTS are recorded by a fiber-optic cable 
attached to the outer part of the production casing, and has recorded the temperature around the fiber to date. 
However, the DAS data (strain) is only available for the stimulation process and cannot be used as a dynamic input 
for reservoir modeling.  

http://www.urtec.org/


URTeC 2902641  2 

 
 

Figure 1: MSEEL project consists of 4 horizontal well in the Marcellus Shale. Well MIP-3H is the only well with the fiber-optic data 
 
DTS has provided continuous multi-point reservoir temperature monitoring along the lateral of the MIP-3H to date. 
This unique dataset can be analyzed by artificial intelligence algorithms such as neural network to predict gas 
production from the MIP-3H. Artificial neural networks (ANN) have been of increasing popularity because of their 
capabilities in efficiently recognizing extremely complex patterns without making any assumptions about the data 
being studied (Keshavarzi et al., 2010, Zheng et al., 2014). ANNs provide a flexible way to handle regression and 
classification problems without explicitly stating the relationship between input and output parameters (Mishra and 
Datta-Gupta, 2017). Neural networks have a large range of applications as they have been used in varying fields of 
study. Specifically, in engineering and geology, they have been shown to have the capability to increase the 
performance of reservoir simulation by using enhancing sparse data (Isaiah et al., 2013). Application of artificial 
intelligence for unconventional oil and gas resources has also been conducted by various researchers. Mohaghegh et 
al., (2011) carried out data mining techniques to evaluate shale production. More recently, Anderson et al., (2016) 
showed the application of the machine learning in classifying hydraulic fractures in the Marcellus Shale. The 
reservoir production forecast has also been implemented for several unconventional Shales (Gaurav, 2017; Cao et 
al., 2016). However, usage of fiber-optic data as a valuable downhole dynamic input for the neural network has not 
been undertaken.  
 
Fiber optic is an advanced non-invasive hydraulic fracture stimulation monitoring tool, which can record 
temperature and strain around the well. Fiber-optic systems works based on optical time-domain reflectometry 
(OTDR). A transmitter sends a light pulse into the fiber; inherent impurities in the glass core, scatter back the light 
toward the detector. The power and the wavelength of the backscattered light enables the detector to estimate the 
temperature, strain, or the vibro-acoustic on the fiber (Tanimola and Hill, 2009). DTS technology measures the 
“Stokes” and “Anti-Stokes” components of the backscattered spectrum (Figure 2). The “Anti-Stokes” component is 
sensitive to the temperature, while the Stoke component is temperature independent. Thus, a ratio of “Anti-Stokes” 
and “Stokes” power provides a measure of temperature (Molenaar et al., 2012). The frequency of the Brillion stokes 
and anti-stokes changes as a function of temperature and strain. Thus, the axial strain of the fiber can also be 
recorded during the hydraulic fracturing. Distributed acoustic sensing (DAS) measures the axial strain of the fiber; 
however, DAS data are usually available only for the stimulation time and not for subsequent reservoir production. 
In contrast, DTS data is more common to be recorded during the reservoir production. Unlike SEGY format DAS 
data, DTS data can be extracted as ASCII or CSV format without further processing.  
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Figure 2: The backscattered light spectrum has Rayleigh Band, Brillouin bans, and Raman bands. Rayleigh and Brillouin bands are sensitive to 
strain while Raman bands are sensitive to the temperature around the fiber (courtesy Carnahan et al., 1999). 
 
Discussions and Results 
 
Ghahfarokhi et al., (2018) used the DAS and DTS data to show hydraulic connections between several stages in the 
MIP-3H well.  The sum of DAS traces squared amplitudes can be used to calculate DAS energy attribute (Kavousi 
et al., 2018). The energy attribute indicates that a more uniform hydraulic fracturing was implemented for Stage 18 
and Stage 17 than Stage 10 (Figure 3).  
 

 
Figure 3: DAS energy attributes of three stages of the MIP-3H are shown. Note that DAS energy attribute has no unit. 

 
The MIP-3H well in the Marcellus Shale continues to record DTS data along the lateral, to date. The raw DTS data 
can be visualized in a waterfall plot (Figure 4). Fiber-optic DTS system has recorded temperature at more than 1320 
points with spacing of 2-3ft (0.6-0.9 m) along the lateral of the well for past two years; yielding almost 1 million 
DTS data points for two years. This amount of data provides the opportunity to use a neural network algorithm for 
predicting gas production from MIP-3H. MIP-3H gas production was constrained until late 2017, and well was 
producing for only several hours per day due to limited market demand. The hours of production of each day is 
equivalent to the daily flowing time throughout this paper. In addition to DTS, we used flowing time as an auxiliary 
input for neural network to predict gas production for the next day. 
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We upscaled the DTS measurements to stage scale by averaging the DTS data between top and bottom of each stage 
(Figure 5).  The waterfall plot shown in Figure 5 shows that the well is cooler in the toe than the heel. Also, stages 
17, 18, and 19 are consistently cooler that the adjacent stages. These results could be related to Joule-Thompson 
cooling effect, which occurs as natural gas expands from the higher-pressure reservoir into the lower pressure 
production casing. 
 
 

 
Figure 4: DTS data until May 2018 are compiled in a waterfall plot. The toe of the well is cooler than the heel of the well. 

 

 
Figure 5: The DTS data in figure 4 are upscaled to the stage scale. 

 
The upscaled DTS attribute is used as an input for a multi-layer perceptron ANN algorithm with 3 hidden layers 
(Figure 6). We optimized learning rate, momentum, and epoch (number of iterations) for enhanced learning of data 
pattern and testing it. The training, validation, and testing errors were carefully inspected to avoid ANN overfitting. 
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The optimal values from numerous experiment give a learning rate, momentum, and epoch as 0.05, 0.11, and 500, 
respectively.  

 
Figure 6: ANN structure with three hidden layers used for daily gas production prediction in this study. Note that input parameters are from 
previous days of the predicted productions. 
 
The designed neural network uses dynamic inputs as shown in Table 1 to predict gas production of the next day. 
Constrained production from the well prior to late 2017 has caused the well to not show a typical declining daily 
production. Although the flow time input helps the neural network to learn the constraint on gas production, training 
is not still very accurate for sudden very high or very low productions (Figure 7). The trained neural network is then 
applied to 102 days of the test data (Figure 8).  
 
Table 1: The dynamic inputs for the neural network. Note that daily gas rate is predicted from input data of its previous day. 

Inputs Output 
Upscaled DTS (t-1) for stage 1 to 28 Gas production (t) 

Flowing time (t-1) 
 

A neural network sensitivity analysis was then carried out by removing each input from the network and evaluating 
changes in the mean absolute error of the network (Figure 9). The neural network sensitivity analysis of DTS data 
suggests that the more influential stages such as 17, 18, 19, 20, and 28 would result in a higher mean absolute error 
(MAE) in network predictions if removed from the input dataset. In contrast, Stage 1 removal will decrease MAE of 
the neural network. Production logging was carried out on March 02, 2017 to assess the gas production share of each 
stage. Figure 4 and Figure 5 shows that downhole reservoir temperature is very sensitive to water and gas production 
and the observed stage temperature varies by time. Hence, a production log might have limited capability to be a 
contemporary indication of individual stage production.  
 
We compare production log data and DAS variance attribute with the neural network sensitivity results to evaluate 
whether there are any relationships between these variables (Table 2). Results show that DAS variance attribute is 
inversely related to MAE of neural network. A smaller DAS variance for a stage could suggests a more uniform 
hydraulic fracturing in all clusters while a higher DAS variance implies that not all the clusters are hydraulically 
fractured (Figure 3). Thus, a stage with a lower DAS variance could cause a higher neural network MAE when 
removed from the predictions (Figure 10a). Stage 13 to 19, known as the engineered stages, are stimulated by a 
limited entry approach in zones with similar minimum horizontal stress. The inverse relationship between DAS 
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variance and neural network MAE is more pronounced in engineered stages (Figure 10b). One the other hand, the 
production log does not show any significant relationships with neural network MAE (Figure 11a and 11b).  
 
 
 

 
Figure 7: The network is trained for 508 days using dynamic input data. 

 
 

 
Figure 8: The test data for 102 days of the well daily gas production.  
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Figure 9: A sensitivity analysis for dynamic inputs suggest that casing pressure and tubing head pressure are amongst the most important factors 
for predicting gas production. 
 

Table 2: The sensitivity analysis results are shown with DAS variance and production log data for all 28 stages. 
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Stage number Sensitivity analysis 
error difference

DAS variance Production log 
(MCF/d)

28 33.2344 0.084507042 50
27 29.4075 0.481690141 84
26 28.782 0.430985915 67
25 22.5155 0.346478873 158
24 27.5071 0.295774648 192
23 24.355 0.43943662 272
22 26.774 0.346478873 389
21 27.304 0.194366197 198
20 32.8965 0.566197183 99
19 32.5699 0.21971831 119
18 30.7536 0.109859155 231
17 34.4187 0.016901408 250
16 21.8756 0.38028169 378
15 18.7224 0.464788732 59
14 23.611 0.236619718 203
13 23.4141 0.185915493 268
12 17.5225 0.785915493 242
11 23.0408 0.549295775 316
10 13.6376 0.667605634 190
9 16.8706 0.228169014 167
8 24.5391 0.684507042 153
7 23.6815 0.473239437 142
6 26.5018 0.718309859 256
5 17.5871 0.709859155 310
4 16.3985 0.709859155 75
3 25.8073 0.43943662 58
2 21.2219 0.532394366 256
1 -10.5889 0.701408451 251
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Figure 10: a) The DAS variance of each stage vs. MAE variations of the neural network if the stage is removed from the input dataset. b) The 

correlation for engineered stage show a significant negative relationship between DAS variance and MAE variations.  
 
 

 
Figure 11: a) The production log data of each stage vs. MAE variations of the neural network if the stage is removed from the input dataset. b) 

The correlation for engineered stage does not show a significant negative relationship between production log results and MAE variations.  
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Conclusions  
 
Key conclusions from this study can be summarized as following: 
 

 
1. The study shows that continuous stream of fiber optic data (DTS) can be used to predict gas production of 

an unconventional shale reservoir. 
2. Sensitivity analysis reveals the importance of several stages. A higher MAE when the stage is removed 

from the network suggest more importance of the removed stage.  
3. DAS energy variance attribute is inversely correlated with the stage importance from the sensitivity 

analysis. This finding is more noticeable in engineered stages.  
4. DTS data until May 2018 show that downhole temperature is dynamic parameter and fluctuate with 

production within any stage. A single day production logging is not a contemporary indication of stages 
productions. 

5. Production log did not show a significant correlation with stage importance from the sensitivity analysis. 
This ratifies the idea that production log is a sample of production distribution in time rather than a 
constant share of production throughout the life of the reservoir. 
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